no later than 15 calendar days after it is detected, except as provided in §60.482-9a. - (ii) A first attempt at repair must be made no later than 5 calendar days after each leak is detected. - (4)(i) Any pressure relief device that is located in a nonfractionating plant that is monitored only by non-plant personnel may be monitored after a pressure release the next time the monitoring personnel are on-site, instead of within 5 days as specified in paragraph (b)(1) of this section and §60.482-4a(b)(1) of subpart VVa. - (ii) No pressure relief device described in paragraph (b)(4)(i) of this section must be allowed to operate for more than 30 days after a pressure release without monitoring. - (c) Sampling connection systems are exempt from the requirements of §60.482–5a. - (d) Pumps in light liquid service, valves in gas/vapor and light liquid service, and pressure relief devices in gas/vapor service that are located at a nonfractionating plant that does not have the design capacity to process 283,200 standard cubic meters per day (scmd) (10 million standard cubic feet per day) or more of field gas are exempt from the routine monitoring requirements of § 60.482–2a(a)(1) and 60.482–7a(a), and paragraph (b)(1) of this section. - (e) Pumps in light liquid service, valves in gas/vapor and light liquid service, and pressure relief devices in gas/vapor service within a process unit that is located in the Alaskan North Slope are exempt from the routine monitoring requirements of §§ 60.482–2a(a)(1), 60.482–7a(a), and paragraph (b)(1) of this section. - (f) An owner or operator may use the following provisions instead of $\S 60.485a(e)$: - (1) Equipment is in heavy liquid service if the weight percent evaporated is 10 percent or less at 150 °C (302 °F) as determined by ASTM Method D86–96 (incorporated by reference as specified in $\S 60.17$). - (2) Equipment is in light liquid service if the weight percent evaporated is greater than 10 percent at 150 $^{\circ}$ C (302 $^{\circ}$ F) as determined by ASTM Method D86-96 (incorporated by reference as specified in §60.17). (g) An owner or operator may use the following provisions instead §60.485a(b)(2): A calibration drift assessment shall be performed, at a minimum, at the end of each monitoring day. Check the instrument using the same calibration gas(es) that were used to calibrate the instrument before use. Follow the procedures specified in Method 21 of appendix A-7 of this part, Section 10.1, except do not adjust the meter readout to correspond to the calibration gas value. Record the instrument reading for each scale used as specified in §60.486a(e)(8). Divide these readings by the initial calibration values for each scale and multiply by 100 to express the calibration drift as a percentage. If any calibration drift assessment shows a negative drift of more than 10 percent from the initial calibration value, then all equipment monitored since the last calibration with instrument readings below the appropriate leak definition and above the leak definition multiplied by (100 minus the percent of negative drift/divided by 100) must be re-monitored. If any calibration drift assessment shows a positive drift of more than 10 percent from the initial calibration value, then, at the owner/operator's discretion, all equipment since the last calibration with instrument readings above the appropriate leak definition and below the leak definition multiplied by (100 plus the percent of positive drift/divided by 100) may be remonitored. #### § 60.5402 What are the alternative emission limitations for equipment leaks from onshore natural gas processing plants? (a) If, in the Administrator's judgment, an alternative means of emission limitation will achieve a reduction in VOC emissions at least equivalent to the reduction in VOC emissions achieved under any design, equipment, work practice or operational standard, the Administrator will publish, in the FEDERAL REGISTER, a notice permitting the use of that alternative means for the purpose of compliance with that standard. The notice may condition permission on requirements related to ### § 60.5405 the operation and maintenance of the alternative means. - (b) Any notice under paragraph (a) of this section must be published only after notice and an opportunity for a public hearing. - (c) The Administrator will consider applications under this section from either owners or operators of affected facilities, or manufacturers of control equipment. - (d) The Administrator will treat applications under this section according to the following criteria, except in cases where the Administrator concludes that other criteria are appropriate: - (1) The applicant must collect, verify and submit test data, covering a period of at least 12 months, necessary to support the finding in paragraph (a) of this section. - (2) If the applicant is an owner or operator of an affected facility, the applicant must commit in writing to operate and maintain the alternative means so as to achieve a reduction in VOC emissions at least equivalent to the reduction in VOC emissions achieved under the design, equipment, work practice or operational standard. ## § 60.5405 What standards apply to sweetening units at onshore natural gas processing plants? (a) During the initial performance test required by §60.8(b), you must achieve at a minimum, an SO_2 emission reduction efficiency (Z_i) to be determined from Table 1 of this subpart based on the sulfur feed rate (X) and the sulfur content of the acid gas (Y) of the affected facility. (b) After demonstrating compliance with the provisions of paragraph (a) of this section, you must achieve at a minimum, an SO_2 emission reduction efficiency (Z_c) to be determined from Table 2 of this subpart based on the sulfur feed rate (X) and the sulfur content of the acid gas (Y) of the affected facility. # § 60.5406 What test methods and procedures must I use for my sweetening units affected facilities at onshore natural gas processing plants? - (a) In conducting the performance tests required in §60.8, you must use the test methods in appendix A of this part or other methods and procedures as specified in this section, except as provided in paragraph §60.8(b). - (b) During a performance test required by $\S60.8$, you must determine the minimum required reduction efficiencies (Z) of SO_2 emissions as required in $\S60.5405(a)$ and (b) as follows: - (1) The average sulfur feed rate (X) must be computed as follows: ### $X = KQ_{\sigma}Y$ Where: X = average sulfur feed rate, Mg/D (LT/D). - Qa = average volumetric flow rate of acid gas from sweetening unit, dscm/day (dscf/ day). - $Y = average \ H_2S$ concentration in acid gas feed from sweetening unit, percent by volume, expressed as a decimal. - K = (32 kg S/kg-mole)/((24.04 dscm/kg-mole)(1000 kg S/Mg)). - = 1.331×10^{-3} Mg/dscm, for metric units. - = (32 lb S/lb-mole)/((385.36 dscf/lb-mole)(2240 lb S/long ton)). - = 3.707×10^{-5} long ton/dscf, for English units. - (2) You must use the continuous readings from the process flowmeter to determine the average volumetric flow rate (Q_a) in dscm/day (dscf/day) of the acid gas from the sweetening unit for each run. (3) You must use the Tutwiler procedure in $\S60.5408$ or a chromatographic procedure following ASTM E260-96 (incorporated by reference as specified in $\S60.17$) to determine the H_2S concentration in the acid gas feed from the sweetening unit (Y). At least one sample per hour (at equally spaced intervals) must be taken during each 4-hour run. The arithmetic mean of all samples must be the average H_2S concentration (Y) on a dry basis for the run. By multiplying the result from the Tutwiler procedure by 1.62×10^{-3} ,